Cell:上海药物所发现肿瘤表观遗传靶点EZH2调控新模式及个性化治疗新策略

中国科学院战略性先导科技专项 “个性化药物——基于疾病分子分型的普惠新药研发” 2018年度研究任务招标遴选

中国科学院A类先导专项“个性化药物-基于疾病分子分型的普惠新药研发”档案专题培训会顺利召开

中科院上海生化细胞所研究新发现打破常理:肝脏炎癌转变过程并非渐变式而是骤变式发展

新型第三代EGFR抑制剂ASK120067获批进入临床研究

热点追踪

FDA全力支持靶向疗法的开发!更快!更高效!

    美国FDA局长Scott Gottlieb博士发表声明,阐述FDA支持更高效地开发靶向疗法的最新努力     近年来,医学界在医疗保健方面经历了转变。医疗创新者不是仅仅关注如何治疗整体疾病,而是正在探索如何针对个体疾病的独特特征,例如人类肿瘤的遗传特征,对症下药进行治疗。这种现代的、有针对性的医学方法的创新已经创造了新的、更有针对性的药物,在某些情况下,可为个别患者量身定制治疗方法。     FDA在推进靶向疗法方面发挥着重要的作用,具体措施是建立一个现代化的框架来确保其提供行业需要的指南和资源,帮助新药开发机构使用新技术有效开发新产品。特别是,FDA需要阐明和扩展现有的途径,使创新者能够根据药物所针对的分子标记物开发产品,而不是更传统的基于疾病表型开发新药的方法。在许多情况下,科学研究揭示疾病的驱动因素实际上是身体内的分子变化。新药的开发基于它们靶向这些分子亚型的能力。同一种分子变化可能是许多不同疾病表型的驱动因素。当药物成功靶向这些分子错误来扭转不同疾病的影响时,我们需要一个新的开发途径,使新药能够以药物靶向的分子标志物为基础获得批准。在肿瘤学领域,这通常被称为不区分组织的药物开发。     通过对产品开发者提供关于监管框架和科学框架方面明确的指导,安全有效的靶向疗法可以通过科学有效的测试被确定,并最终被提供给患者。这就是为什么今天我们要发布两个指导性草案,将为医疗产品开发者提供更多关于FDA对研究和开发下一代个性化疗法的建议的明确信息。     第一个草案指南,“Developing Targeted Therapies in Low-Frequency Molecular Subsets of a Disease”(在疾病的低频率分子子集中开发靶向疗法),解决了寻找疗法这一重要课题,这些疗法针对经常导致或促成疾病的分子变化(例如基因突变),包括罕见的存在于一小部分患者体内的分子变化。     该指南草案以一个更简洁明了的格式提出了一种方法,使得药物开发人员可根据罕见突变的鉴定招募患者参加靶向治疗的临床试验,前提是合理的科学证据表明该药物可能对这些患者有效。该指南讨论了证明特定疾病中各种分子亚型的有效性所需的证据,这可促进对患者可能获益的靶向疗法的更一致的开发和批准。指南中描述的这些科学原则也可以用于支持“不区分组织”药物的开发。这涉及药物如何能够在靶向不同表型共有的分子亚型的基础上获得监管部门的批准,而不仅仅是基于单个疾病状态。     我们认为这两种方法都有可能增加为那些不常见突变的患者寻找可行治疗方案的可能性。最终确定稿后,本指南草案将代表FDA当前的想法。FDA还计划在明年年初发表一篇文章,详细全面地介绍这个问题。     第二草案指南, “Investigational IVD Devices Used in Clinical Investigations of Therapeutic Products”(用于治疗性产品的临床研究的研究性IVD器械),试图为正在进行的临床试验提供清晰的框架,以确定用于治疗性产品研究的体外诊断器械是否必须进行与在研药物相独立的FDA审查。为了开发安全有效的新型靶向治疗,临床试验通常使用研究性或未经批准的IVD来评估生物标志物,并指导对治疗产品或护理策略的选择。     本指南草案在定稿后将阐明用于治疗性产品临床试验的研究性IVD的适当监管途径,这非常重要,新型靶向疗法的试验结果不会因为确定特定生物标志物的诊断试验不符合适当的监管标准而受到牵连。目的是使开发更有针对性的“药物和诊断系统”的过程更有效率。     在今天发布的IVD草案指导的基础上,我们也在考虑如何简化对肿瘤治疗产品和伴随使用的IVD的审查,并计划在不久的将来就此发布指导草案。目标是减少开发机构为开发抗癌药物而承受的负担以及FDA工作人员的负担。     这些指导性草案只是FDA正在进行的推动创新型靶向药物研发和培育个性化治疗方法的几个例子。例如,本月早些时候,FDA发布了指南草案,描述了一个潜在的可以帮助公司在罕见小儿疾病的相同临床试验中合作和测试多种药物产品的新方法,从而减少接受安慰剂治疗的患者数量。我们还概述了如何使用建模和模拟来减少在这些罕见的儿科疾病临床试验中对安慰剂组的依赖。最后,我们特别提出了一种更有效的途径来开发针对罕见小儿疾病戈谢病的药物。我们最近也批准三种新颖的基于测序的新型设备,单一测试可用于检测多种癌症标志物,从而能够开发证据以推动更多的个性化护理管理决策。重磅!FDA改革最新动向:为多臂、多公司临床试验打开了大门!     通过为研发团队的同事们提出简化的方法,FDA希望能够为患者更高效地提供更安全有效的新型靶向疗法。我们期待收到关于今天发布的指导草案的反馈意见,继续致力于协助医学界进一步实现现代化和个性化的护理方法,增加新的医疗技术带来的公共健康益处。

2017-12-18

2017年国家自然科学基金项目指南

生命科学部 生命科学一处 生命科学二处 生命科学三处 生命科学四处 生命科学五处 生命科学六处 生命科学七处 生命科学八处 医学科学部 医学科学一处 医学科学二处 医学科学三处 医学科学四处 医学科学五处 医学科学六处 医学科学七处 医学科学八处 医学科学九处 医学科学十处 详细请点击进入:进入

2017-01-20

工信部出台《大数据产业发展规划(2016-2020年)》,要建社保、健康领域大数据试点示范

1月17日,国家工信部发布《大数据产业发展规划(2016-2020年)》的通知,从而贯彻落实《中华人民共和国国民经济和社会发展第十三个五年规划纲要》和《促进大数据发展行动纲要》,加快实施国家大数据战略,推动大数据产业健康快速发展。 其中包括,促进大数据在政务、交通、教育、健康、社保、就业等民生领域的应用。开展跨行业大数据试点示范。选择电信、互联网、工业、金融、交通、健康等数据资源丰富、信息化基础较好、应用需求迫切的重点行业领域,建设跨行业跨领域大数据平台。 附 大数据产业发展规划(2016-2020年)(全文) 数据是国家基础性战略资源,是21世纪的“钻石矿”。党中央、国务院高度重视大数据在经济社会发展中的作用,党的十八届五中全会提出“实施国家大数据战略”,国务院印发《促进大数据发展行动纲要》,全面推进大数据发展,加快建设数据强国。“十三五”时期是我国全面建成小康社会的决胜阶段,是新旧动能接续转换的关键时期,全球新一代信息产业处于加速变革期,大数据技术和应用处于创新突破期,国内市场需求处于爆发期,我国大数据产业面临重要的发展机遇。抢抓机遇,推动大数据产业发展,对提升政府治理能力、优化民生公共服务、促进经济转型和创新发展有重大意义。为推动我国大数据产业持续健康发展,深入贯彻十八届五中全会精神,实施国家大数据战略,落实国务院《促进大数据发展行动纲要》,按照《国民经济和社会发展第十三个五年规划纲要》的总体部署,编制本规划。 一、我国发展大数据产业的基础 大数据产业指以数据生产、采集、存储、加工、分析、服务为主的相关经济活动,包括数据资源建设、大数据软硬件产品的开发、销售和租赁活动,以及相关信息技术服务。 “十二五”期间,我国信息产业迅速壮大,信息技术快速发展,互联网经济日益繁荣,积累了丰富的数据资源,技术创新取得了明显突破,应用势头良好,为“十三五”时期我国大数据产业加快发展奠定了坚实基础。 信息化积累了丰富的数据资源。我国信息化发展水平日益提高,对数据资源的采集、挖掘和应用水平不断深化。政务信息化水平不断提升,全国面向公众的政府网站达8.4万个。智慧城市建设全面展开,“十二五”期间近300个城市进行了智慧城市试点。两化融合发展进程不断深入,正进入向纵深发展的新阶段。信息消费蓬勃发展,网民数量超过7亿,移动电话用户规模已经突破13亿,均居世界第一。月度户均移动互联网接入流量达835M。政府部门、互联网企业、大型集团企业积累沉淀了大量的数据资源。我国已成为产生和积累数据量最大、数据类型最丰富的国家之一。 大数据技术创新取得明显突破。在软硬件方面,国内骨干软硬件企业陆续推出自主研发的大数据基础平台产品,一批信息服务企业面向特定领域研发数据分析工具,提供创新型数据服务。在平台建设方面,互联网龙头企业服务器单集群规模达到上万台,具备建设和运维超大规模大数据平台的技术实力。在智能分析方面,部分企业积极布局深度学习等人工智能前沿技术,在语音识别、图像理解、文本挖掘等方面抢占技术制高点。在开源技术方面,我国对国际大数据开源软件社区的贡献不断增大。 大数据应用推进势头良好。大数据在互联网服务中得到广泛应用,大幅度提升网络社交、电商、广告、搜索等服务的个性化和智能化水平,催生共享经济等数据驱动的新兴业态。大数据加速向传统产业渗透,驱动生产方式和管理模式变革,推动制造业向网络化、数字化和智能化方向发展。电信、金融、交通等行业利用已积累的丰富数据资源,积极探索客户细分、风险防控、信用评价等应用,加快服务优化、业务创新和产业升级步伐。 大数据产业体系初具雏形。2015年,我国信息产业收入达到17.1万亿元,比2010年进入“十二五”前翻了一番。其中软件和信息技术服务业实现软件业务收入4.3万亿元,同比增长15.7%。大型数据中心向绿色化、集约化发展,跨地区经营互联网数据中心(IDC)业务的企业达到 295家。云计算服务逐渐成熟,主要云计算平台的数据处理规模已跻身世界前列,为大数据提供强大的计算存储能力并促进数据集聚。在大数据资源建设、大数据技术、大数据应用领域涌现出一批新模式和新业态。龙头企业引领,上下游企业互动的产业格局初步形成。基于大数据的创新创业日趋活跃,大数据技术、产业与服务成为社会资本投入的热点。 大数据产业支撑能力日益增强。形成了大数据标准化工作机制,大数据标准体系初步形成,开展了大数据技术、交易、开放共享、工业大数据等国家标准的研制工作,部分标准在北京、上海、贵阳开展了试点示范。一批大数据技术研发实验室、工程中心、企业技术中心、产业创新平台、产业联盟、投资基金等形式的产业支撑平台相继建成。大数据安全保障体系和法律法规不断完善。 二、“十三五”时期面临的形势 大数据成为塑造国家竞争力的战略制高点之一,国家竞争日趋激烈。一个国家掌握和运用大数据的能力成为国家竞争力的重要体现,各国纷纷将大数据作为国家发展战略,将产业发展作为大数据发展的核心。美国高度重视大数据研发和应用,2012年3月推出“大数据研究与发展倡议”,将大数据作为国家重要的战略资源进行管理和应用,2016年5月进一步发布“联邦大数据研究与开发计划”,不断加强在大数据研发和应用方面的布局。欧盟2014年推出了“数据驱动的经济”战略,倡导欧洲各国抢抓大数据发展机遇。此外,英国、日本、澳大利亚等国也出台了类似政策,推动大数据应用,拉动产业发展。 大数据驱动信息产业格局加速变革,创新发展面临难得机遇。当今世界,新一轮科技革命和产业变革正在孕育兴起,信息产业格局面临巨大变革。大数据推动下,信息技术正处于新旧轨道切换的过程中,分布式系统架构、多元异构数据管理技术等新技术、新模式快速发展,产业格局正处在创新变革的关键时期,我国面临加快发展重大机遇。 我国经济社会发展对信息化提出了更高要求,发展大数据具有强大的内生动力。推动大数据应用,加快传统产业数字化、智能化,做大做强数字经济,能够为我国经济转型发展提供新动力,为重塑国家竞争优势创造新机遇,为提升政府治理能力开辟新途径,是支撑国家战略的重要抓手。当前我国正在推进供给侧结构性改革和服务型政府建设,加快实施“互联网+”行动计划和中国制造2025战略,建设公平普惠、便捷高效的民生服务体系,为大数据产业创造了广阔的市场空间,是我国大数据产业发展的强大内生动力。 我国大数据产业具备了良好基础,面临难得的发展机遇,但仍然存在一些困难和问题。一是数据资源开放共享程度低。数据质量不高,数据资源流通不畅,管理能力弱,数据价值难以被有效挖掘利用。二是技术创新与支撑能力不强。我国在新型计算平台、分布式计算架构、大数据处理、分析和呈现方面与国外仍存在较大差距,对开源技术和相关生态系统影响力弱。三是大数据应用水平不高。我国发展大数据具有强劲的应用市场优势,但是目前还存在应用领域不广泛、应用程度不深、认识不到位等问题。四是大数据产业支撑体系尚不完善。数据所有权、隐私权等相关法律法规和信息安全、开放共享等标准规范不健全,尚未建立起兼顾安全与发展的数据开放、管理和信息安全保障体系。五是人才队伍建设亟需加强。大数据基础研究、产品研发和业务应用等各类人才短缺,难以满足发展需要。 “十三五”时期是我国全面建成小康社会决胜阶段,是实施国家大数据战略的起步期,是大数据产业崛起的重要窗口期,必须抓住机遇加快发展,实现从数据大国向数据强国转变。 三、指导思想和发展目标 (一)指导思想 全面贯彻党的十八大和十八届三中、四中、五中、六中全会精神,坚持创新、协调、绿色、开放、共享的发展理念,围绕实施国家大数据战略,以强化大数据产业创新发展能力为核心,以推动数据开放与共享、加强技术产品研发、深化应用创新为重点,以完善发展环境和提升安全保障能力为支撑,打造数据、技术、应用与安全协同发展的自主产业生态体系,全面提升我国大数据的资源掌控能力、技术支撑能力和价值挖掘能力,加快建设数据强国,有力支撑制造强国和网络强国建设。 (二)发展原则 创新驱动。瞄准大数据技术发展前沿领域,强化创新能力,提高创新层次,以企业为主体集中攻克大数据关键技术,加快产品研发,发展壮大新兴大数据服务业态,加强大数据技术、应用和商业模式的协同创新,培育市场化、网络化的创新生态。 应用引领。发挥我国市场规模大、应用需求旺的优势,以国家战略、人民需要、市场需求为牵引,加快大数据技术产品研发和在各行业、各领域的应用,促进跨行业、跨领域、跨地域大数据应用,形成良性互动的产业发展格局。 开放共享。汇聚全球大数据技术、人才和资金等要素资源,坚持自主创新和开放合作相结合,走开放式的大数据产业发展道路。树立数据开放共享理念,完善相关制度,推动数据资源开放共享与信息流通。 统筹协调。发挥企业在大数据产业创新中的主体作用,加大政府政策支持和引导力度,营造良好的政策法规环境,形成政产学研用统筹推进的机制。加强中央、部门、地方大数据发展政策衔接,优化产业布局,形成协同发展合力。 安全规范。安全是发展的前提,发展是安全的保障,坚持发展与安全并重,增强信息安全技术保障能力,建立健全安全防护体系,保障信息安全和个人隐私。加强行业自律,完善行业监管,促进数据资源有序流动与规范利用。 (三)发展目标 到2020年,技术先进、应用繁荣、保障有力的大数据产业体系基本形成。大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右,加快建设数据强国,为实现制造强国和网络强国提供强大的产业支撑。 --技术产品先进可控。在大数据基础软硬件方面形成安全可控技术产品,在大数据获取、存储管理和处理平台技术领域达到国际先进水平,在数据挖掘、分析与应用等算法和工具方面处于领先地位,形成一批自主创新、技术先进,满足重大应用需求的产品、解决方案和服务。 --应用能力显著增强。工业大数据应用全面支撑智能制造和工业转型升级,大数据在创新创业、政府管理和民生服务等方面广泛深入应用,技术融合、业务融合和数据融合能力显著提升,实现跨层级、跨地域、跨系统、跨部门、跨业务的协同管理和服务,形成数据驱动创新发展的新模式。 --生态体系繁荣发展。形成若干创新能力突出的大数据骨干企业,培育一批专业化数据服务创新型中小企业,培育10家国际领先的大数据核心龙头企业和500家大数据应用及服务企业。形成比较完善的大数据产业链,大数据产业体系初步形成。建设10-15个大数据综合试验区,创建一批大数据产业集聚区,形成若干大数据新型工业化产业示范基地。 --支撑能力不断增强。建立健全覆盖技术、产品和管理等方面的大数据标准体系。建立一批区域性、行业性大数据产业和应用联盟及行业组织。培育一批大数据咨询研究、测试评估、技术和知识产权、投融资等专业化服务机构。建设1-2个运营规范、具有一定国际影响力的开源社区。 --数据安全保障有力。数据安全技术达到国际先进水平。国家数据安全保护体系基本建成。数据安全技术保障能力和保障体系基本满足国家战略和市场应用需求。数据安全和个人隐私保护的法规制度较为完善。 四、重点任务和重大工程 (一)强化大数据技术产品研发 以应用为导向,突破大数据关键技术,推动产品和解决方案研发及产业化,创新技术服务模式,形成技术先进、生态完备的技术产品体系。 加快大数据关键技术研发。围绕数据科学理论体系、大数据计算系统与分析、大数据应用模型等领域进行前瞻布局,加强大数据基础研究。发挥企业创新主体作用,整合产学研用资源优势联合攻关,研发大数据采集、传输、存储、管理、处理、分析、应用、可视化和安全等关键技术。突破大规模异构数据融合、集群资源调度、分布式文件系统等大数据基础技术,面向多任务的通用计算框架技术,以及流计算、图计算等计算引擎技术。支持深度学习、类脑计算、认知计算、区块链、虚拟现实等前沿技术创新,提升数据分析处理和知识发现能力。结合行业应用,研发大数据分析、理解、预测及决策支持与知识服务等智能数据应用技术。突破面向大数据的新型计算、存储、传感、通信等芯片及融合架构、内存计算、亿级并发、EB级存储、绿色计算等技术,推动软硬件协同发展。 培育安全可控的大数据产品体系。以应用为牵引,自主研发和引进吸收并重,加快形成安全可控的大数据产品体系。重点突破面向大数据应用基础设施的核心信息技术设备、信息安全产品以及面向事务的新型关系数据库、列式数据库、NoSQL数据库、大规模图数据库和新一代分布式计算平台等基础产品。加快研发新一代商业智能、数据挖掘、数据可视化、语义搜索等软件产品。结合数据生命周期管理需求,培育大数据采集与集成、大数据分析与挖掘、大数据交互感知、基于语义理解的数据资源管理等平台产品。面向重点行业应用需求,研发具有行业特征的大数据检索、分析、展示等技术产品,形成垂直领域成熟的大数据解决方案及服务。 创新大数据技术服务模式。加快大数据服务模式创新,培育数据即服务新模式和新业态,提升大数据服务能力,降低大数据应用门槛和成本。围绕数据全生命周期各阶段需求,发展数据采集、清洗、分析、交易、安全防护等技术服务。推进大数据与云计算服务模式融合,促进海量数据、大规模分布式计算和智能数据分析等公共云计算服务发展,提升第三方大数据技术服务能力。推动大数据技术服务与行业深度结合,培育面向垂直领域的大数据服务模式。 专栏1:大数据关键技术及产品研发与产业化工程 突破技术。支持大数据共性关键技术研究,实施云计算和大数据重点专项等重大项目。着力突破服务器新型架构和绿色节能技术、海量多源异构数据的存储和管理技术、可信数据分析技术、面向大数据处理的多种计算模型及其编程框架等关键技术。 打造产品。以应用为导向,支持大数据产品研发,建立完善的大数据工具型、平台型和系统型产品体系,形成面向各行业的成熟大数据解决方案,推动大数据产品和解决方案研发及产业化。 树立品牌。支持我国大数据企业建设自主品牌,提升市场竞争力。引导企业加强产品质量管控,提高创新能力,鼓励企业加强战略合作。加强知识产权保护,推动自主知识产权标准产业化和国际化应用。培育一批国际知名的大数据产品和服务公司。 专栏2:大数据服务能力提升工程 培育数据即服务模式。发展数据资源服务、在线数据服务、大数据平台服务等模式,支持企业充分整合、挖掘、利用自有数据或公共数据资源,面向具体需求和行业领域,开展数据分析、数据咨询等服务,形成按需提供数据服务的新模式。 支持第三方大数据服务。鼓励企业探索数据采集、数据清洗、数据交换等新商业模式,培育一批开展数据服务的新业态。支持弹性分布式计算、数据存储等基础数据处理云服务发展。加快发展面向大数据分析的在线机器学习、自然语言处理、图像理解、语音识别、空间分析、基因分析和大数据可视化等数据分析服务。开展第三方数据交易平台建设试点示范。 (二)深化工业大数据创新应用 加强工业大数据基础设施建设规划与布局,推动大数据在产品全生命周期和全产业链的应用,推进工业大数据与自动控制和感知硬件、工业核心软件、工业互联网、工业云和智能服务平台融合发展,形成数据驱动的工业发展新模式,支撑中国制造2025战略,探索建立工业大数据中心。 加快工业大数据基础设施建设。加快建设面向智能制造单元、智能工厂及物联网应用的低延时、高可靠、广覆盖的工业互联网,提升工业网络基础设施服务能力。加快工业传感器、射频识别(RFID)、光通信器件等数据采集设备的部署和应用,促进工业物联网标准体系建设,推动工业控制系统的升级改造,汇聚传感、控制、管理、运营等多源数据,提升产品、装备、企业的网络化、数字化和智能化水平。 推进工业大数据全流程应用。支持建设工业大数据平台,推动大数据在重点工业领域各环节应用,提升信息化和工业化深度融合发展水平,助推工业转型升级。加强研发设计大数据应用能力,利用大数据精准感知用户需求,促进基于数据和知识的创新设计,提升研发效率。加快生产制造大数据应用,通过大数据监控优化流水线作业,强化故障预测与健康管理,优化产品质量,降低能源消耗。提升经营管理大数据应用水平,提高人力、财务、生产制造、采购等关键经营环节业务集成水平,提升管理效率和决策水平,实现经营活动的智能化。推动客户服务大数据深度应用,促进大数据在售前、售中、售后服务中的创新应用。促进数据资源整合,打通各个环节数据链条,形成全流程的数据闭环。 培育数据驱动的制造业新模式。深化制造业与互联网融合发展,坚持创新驱动,加快工业大数据与物联网、云计算、信息物理系统等新兴技术在制造业领域的深度集成与应用,构建制造业企业大数据“双创”平台,培育新技术、新业态和新模式。利用大数据,推动“专精特新”中小企业参与产业链,与中国制造2025、军民融合项目对接,促进协同设计和协同制造。大力发展基于大数据的个性化定制,推动发展顾客对工厂(C2M)等制造模式,提升制造过程智能化和柔性化程度。利用大数据加快发展制造即服务模式,促进生产型制造向服务型制造转变。 专栏3:工业大数据创新发展工程 加强工业大数据关键技术研发及应用。加快大数据获取、存储、分析、挖掘、应用等关键技术在工业领域的应用,重点研究可编程逻辑控制器、高通量计算引擎、数据采集与监控等工控系统,开发新型工业大数据分析建模工具,开展工业大数据优秀产品、服务及应用案例的征集与宣传推广。 建设工业大数据公共服务平台,提升中小企业大数据运用能力。支持面向典型行业中小企业的工业大数据服务平台建设,实现行业数据资源的共享交换以及对产品、市场和经济运行的动态监控、预测预警,提升对中小企业的服务能力。 重点领域大数据平台建设及应用示范。支持面向航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车等离散制造企业,以及石油、化工、电力等流程制造企业集团的工业大数据平台开发和应用示范,整合集团数据资源,提升集团企业协同研发能力和集中管控水平。 探索工业大数据创新模式。支持建设一批工业大数据创新中心,推进企业、高校和科研院所共同探索工业大数据创新的新模式和新机制,推进工业大数据核心技术突破、产业标准建立、应用示范推广和专业人才培养引进,促进研究成果转化。 (三)促进行业大数据应用发展 加强大数据在重点行业领域的深入应用,促进跨行业大数据融合创新,在政府治理和民生服务中提升大数据运用能力,推动大数据与各行业领域的融合发展。 推动重点行业大数据应用。推动电信、能源、金融、商贸、农业、食品、文化创意、公共安全等行业领域大数据应用,推进行业数据资源的采集、整合、共享和利用,充分释放大数据在产业发展中的变革作用,加速传统行业经营管理方式变革、服务模式和商业模式创新及产业价值链体系重构。 促进跨行业大数据融合创新。打破体制机制障碍,打通数据孤岛,创新合作模式,培育交叉融合的大数据应用新业态。支持电信、互联网、工业、金融、健康、交通等信息化基础好的领域率先开展跨领域、跨行业的大数据应用,培育大数据应用新模式。支持大数据相关企业与传统行业加强技术和资源对接,共同探索多元化合作运营模式,推动大数据融合应用。 强化社会治理和公共服务大数据应用。以民生需求为导向,以电子政务和智慧城市建设为抓手,以数据集中和共享为途径,推动全国一体化的国家大数据中心建设,推进技术融合、业务融合、数据融合,实现跨层级、跨地域、跨系统、跨部门、跨业务的协同管理和服务。促进大数据在政务、交通、教育、健康、社保、就业等民生领域的应用,探索大众参与的数据治理模式,提升社会治理和城市管理能力,为群众提供智能、精准、高效、便捷的公共服务。促进大数据在市场主体监管与服务领域应用,建设基于大数据的重点行业运行分析服务平台,加强重点行业、骨干企业经济运行情况监测,提高行业运行监管和服务的时效性、精准性和前瞻性。促进政府数据和企业数据融合,为企业创新发展和社会治理提供有力支撑。 专栏4:跨行业大数据应用推进工程 开展跨行业大数据试点示范。选择电信、互联网、工业、金融、交通、健康等数据资源丰富、信息化基础较好、应用需求迫切的重点行业领域,建设跨行业跨领域大数据平台。基于平台探索跨行业数据整合共享机制、数据共享范围、数据整合对接标准,研发数据及信息系统互操作技术,推动跨行业的数据资源整合集聚,开展跨行业大数据应用,选择应用范围广、应用效果良好的领域开展试点示范。 成立跨行业大数据推进组织。支持成立跨部门、跨行业、跨地域的大数据应用推进组织,联合开展政策、法律法规、技术和标准研究,加强跨行业大数据合作交流。 建设大数据融合应用试验床。建设跨行业大数据融合应用试验床,汇聚测试数据、分析软件和建模工具,为研发机构、大数据企业开展跨界联合研发提供环境。 (四)加快大数据产业主体培育 引导区域大数据发展布局,促进基于大数据的创新创业,培育一批大数据龙头企业和创新型中小企业,形成多层次、梯队化的创新主体和合理的产业布局,繁荣大数据生态。 利用大数据助推创新创业。鼓励资源丰富、技术先进的大数据领先企业建设大数据平台,开放平台数据、计算能力、开发环境等基础资源,降低创新创业成本。鼓励大型企业依托互联网“双创”平台,提供基于大数据的创新创业服务。组织开展算法大赛、应用创新大赛、众包众筹等活动,激发创新创业活力。支持大数据企业与科研机构深度合作,打通科技创新和产业化之间的通道,形成数据驱动的科研创新模式。 构建企业协同发展格局。支持龙头企业整合利用国内外技术、人才和专利等资源,加快大数据技术研发和产品创新,提高产品和服务的国际市场占有率和品牌影响力,形成一批具有国际竞争力的综合型和专业型龙头企业。支持中小企业深耕细分市场,加快服务模式创新和商业模式创新,提高中小企业的创新能力。鼓励生态链各环节企业加强合作,构建多方协作、互利共赢的产业生态,形成大中小企业协同发展的良好局面。 优化大数据产业区域布局。引导地方结合自身条件,突出区域特色优势,明确重点发展方向,深化大数据应用,合理定位,科学谋划,形成科学有序的产业分工和区域布局。在全国建设若干国家大数据综合试验区,在大数据制度创新、公共数据开放共享、大数据创新应用、大数据产业集聚、数据要素流通、数据中心整合、大数据国际交流合作等方面开展系统性探索试验,为全国大数据发展和应用积累经验。在大数据产业特色优势明显的地区建设一批大数据产业集聚区,创建大数据新型工业化产业示范基地,发挥产业集聚和协同作用,以点带面,引领全国大数据发展。统筹规划大数据跨区域布局,利用大数据推动信息共享、信息消费、资源对接、优势互补,促进区域经济社会协调发展。 专栏5:大数据产业集聚区创建工程 建设一批大数据产业集聚区。支持地方根据自身特点和产业基础,突出优势,合理定位,创建一批大数据产业集聚区,形成若干大数据新型工业化产业示范基地。加强基础设施统筹整合,助推大数据创新创业,培育大数据骨干企业和中小企业,强化服务与应用,完善配套措施,构建良好产业生态。在大数据技术研发、行业应用、教育培训、政策保障等方面积极创新,培育壮大大数据产业,带动区域经济社会转型发展,形成科学有序的产业分工和区域布局。建立集聚区评价指标体系,开展定期评估。 (五)推进大数据标准体系建设 加强大数据标准化顶层设计,逐步完善标准体系,发挥标准化对产业发展的重要支撑作用。 加快大数据重点标准研制与推广。结合大数据产业发展需求,建立并不断完善涵盖基础、数据、技术、平台/工具、管理、安全和应用的大数据标准体系。加快基础通用国家标准和重点应用领域行业标准的研制。选择重点行业、领域、地区开展标准试验验证和试点示范,加强宣贯和实施。建立标准符合性评估体系,强化标准对市场培育、服务能力提升和行业管理的支撑作用。加强国家标准、行业标准和团体标准等各类标准之间的衔接配套。 积极参与大数据国际标准化工作。加强我国大数据标准化组织与相关国际组织的交流合作。组织我国产学研用资源,加快国际标准提案的推进工作。支持相关单位参与国际标准化工作并承担相关职务,承办国际标准化活动,扩大国际影响。 专栏6:大数据重点标准研制及应用示范工程 加快研制重点国家标准。围绕大数据标准化的重大需求,开展数据资源分类、开放共享、交易、标识、统计、产品评价、数据能力、数据安全等基础通用标准以及工业大数据等重点应用领域相关国家标准的研制。 建立验证检测平台。建立标准试验验证和符合性检测平台,重点开展数据开放共享、产品评价、数据能力成熟度、数据质量、数据安全等关键标准的试验验证和符合性检测。 开展标准应用示范。优先支持大数据综合试验区和大数据产业集聚区建立标准示范基地,开展重点标准的应用示范工作。 (六)完善大数据产业支撑体系 统筹布局大数据基础设施,建设大数据产业发展创新服务平台,建立大数据统计及发展评估体系,创造良好的产业发展环境。 合理布局大数据基础设施建设。引导地方政府和有关企业统筹布局数据中心建设,充分利用政府和社会现有数据中心资源,整合改造规模小、效率低、能耗高的分散数据中心,避免资源和空间的浪费。鼓励在大数据基础设施建设中广泛推广可再生能源、废弃设备回收等低碳环保方式,引导大数据基础设施体系向绿色集约、布局合理、规模适度、高速互联方向发展。加快网络基础设施建设升级,优化网络结构,提升互联互通质量。 构建大数据产业发展公共服务平台。充分利用和整合现有创新资源,形成一批大数据测试认证及公共服务平台。支持建立大数据相关开源社区等公共技术创新平台,鼓励开发者、企业、研究机构积极参与大数据开源项目,增强在开源社区的影响力,提升创新能力。 建立大数据发展评估体系。研究建立大数据产业发展评估体系,对我国及各地大数据资源建设状况、开放共享程度、产业发展能力、应用水平等进行监测、分析和评估,编制发布大数据产业发展指数,引导和评估全国大数据发展。 专栏7:大数据公共服务体系建设工程 建立大数据产业公共服务平台。提供政策咨询、共性技术支持、知识产权、投融资对接、品牌推广、人才培训、创业孵化等服务,推动大数据企业快速成长。 支持第三方机构建立测试认证平台。开展大数据可用性、可靠性、安全性和规模质量等方面的测试测评、认证评估等服务。 建立大数据开源社区。以自主创新技术为核心,孵化培育本土大数据开源社区和开源项目,构建大数据产业生态。 (七)提升大数据安全保障能力 针对网络信息安全新形势,加强大数据安全技术产品研发,利用大数据完善安全管理机制,构建强有力的大数据安全保障体系。 加强大数据安全技术产品研发。重点研究大数据环境下的统一账号、认证、授权和审计体系及大数据加密和密级管理体系,突破差分隐私技术、多方安全计算、数据流动监控与追溯等关键技术。推广防泄露、防窃取、匿名化等大数据保护技术,研发大数据安全保护产品和解决方案。加强云平台虚拟机安全技术、虚拟化网络安全技术、云安全审计技术、云平台安全统一管理技术等大数据安全支撑技术研发及产业化,加强云计算、大数据基础软件系统漏洞挖掘和加固。 提升大数据对网络信息安全的支撑能力。综合运用多源数据,加强大数据挖掘分析,增强网络信息安全风险感知、预警和处置能力。加强基于大数据的新型信息安全产品研发,推动大数据技术在关键信息基础设施安全防护中的应用,保障金融、能源、电力、通信、交通等重要信息系统安全。建设网络信息安全态势感知大数据平台和国家工业控制系统安全监测与预警平台,促进网络信息安全威胁数据采集与共享,建立统一高效、协同联动的网络安全风险报告、情报共享和研判处置体系。 专栏8:大数据安全保障工程 开展大数据安全产品研发与应用示范。支持相关企业、科研院所开展大数据全生命周期安全研究,研发数据来源可信、多源融合安全数据分析等新型安全技术,推动数据安全态势感知、安全事件预警预测等新型安全产品研发和应用。 支持建设一批大数据安全攻防仿真实验室。研究建立软硬一体化的模拟环境,支持工业、能源、金融、电信、互联网等重点行业开展数据入侵、反入侵和网络攻防演练,提升数据安全防护水平和应急处置能力。 五、保障措施 (一)推进体制机制创新 在促进大数据发展部际联席会议制度下,建立完善中央和地方联动的大数据发展协调机制,形成以应用带动产业、以产业支撑应用的良性格局,协同推进大数据产业和应用的发展。加强资源共享和沟通协作,协调制定政策措施和行动计划,解决大数据产业发展过程中的重大问题。建立大数据发展部省协调机制,加强地方与中央大数据产业相关政策、措施、规划等政策的衔接,通过联合开展产业规划等措施促进区域间大数据政策协调。组织开展大数据发展评估检查工作,确保重点工作有序推进。充分发挥地方政府大数据发展统筹机构或协调机制的作用,将大数据产业发展纳入本地区经济社会发展规划,加强大数据产业发展的组织保障。 (二)健全相关政策法规制度 推动制定公共信息资源保护和开放的制度性文件,以及政府信息资源管理办法,逐步扩大开放数据的范围,提高开放数据质量。加强数据统筹管理及行业自律,强化大数据知识产权保护,鼓励企业设立专门的数据保护职位。研究制定数据流通交易规则,推进流通环节的风险评估,探索建立信息披露制度,支持第三方机构进行数据合规应用的监督和审计,保障相关主体合法权益。推动完善个人信息保护立法,建立个人信息泄露报告制度,健全网络数据和用户信息的防泄露、防篡改和数据备份等安全防护措施及相关的管理机制,加强对数据滥用、侵犯个人隐私等行为的管理和惩戒力度。强化关键信息基础设施安全保护,推动建立数据跨境流动的法律体系和管理机制,加强重要敏感数据跨境流动的管理。推动大数据相关立法进程,支持地方先行先试,研究制定地方性大数据相关法规。 (三)加大政策扶持力度 结合《促进大数据发展行动纲要》、中国制造2025、“互联网+”行动计划、培育发展战略性新兴产业的决定等战略文件,制定面向大数据产业发展的金融、政府采购等政策措施,落实相关税收政策。充分发挥国家科技计划(专项、基金等)资金扶持政策的作用,鼓励有条件的地方设立大数据发展专项基金,支持大数据基础技术、重点产品、服务和应用的发展。鼓励产业投资机构和担保机构加大对大数据企业的支持力度,引导金融机构对技术先进、带动力强、惠及面广的大数据项目优先予以信贷支持,鼓励大数据企业进入资本市场融资,为企业重组并购创造更加宽松的市场环境。支持符合条件的大数据企业享受相应优惠政策。 (四)建设多层次人才队伍 建立适应大数据发展需求的人才培养和评价机制。加强大数据人才培养,整合高校、企业、社会资源,推动建立创新人才培养模式,建立健全多层次、多类型的大数据人才培养体系。鼓励高校探索建立培养大数据领域专业型人才和跨界复合型人才机制。支持高校与企业联合建立实习培训机制,加强大数据人才职业实践技能培养。鼓励企业开展在职人员大数据技能培训,积极培育大数据技术和应用创新型人才。依托社会化教育资源,开展大数据知识普及和教育培训,提高社会整体认知和应用水平。鼓励行业组织探索建立大数据人才能力评价体系。完善配套措施,培养大数据领域创新型领军人才,吸引海外大数据高层次人才来华就业、创业。 (五)推动国际化发展 按照网络强国建设的总体要求,结合“一带一路”等国家重大战略,加快开拓国际市场,输出优势技术和服务,形成一批具有国际竞争力的大数据企业和产品。充分利用国际合作交流机制和平台,加强在大数据关键技术研究、产品研发、数据开放共享、标准规范、人才培养等方面的交流与合作。坚持网络主权原则,积极参与数据安全、数据跨境流动等国际规则体系建设,促进开放合作,构建良好秩序。

2017-01-20

2017年中日韩前瞻计划项目——“基于分子影像的精准医学基础研究”现接受申请

中日韩前瞻计划项目(Asia 3 Foresight Program,简称:A3前瞻计划)是国家自然科学基金委员会(NSFC)、日本学术振兴会(JSPS)和韩国国家研究基金会(NRF,原韩国科学与工程基金会KOSEF)共同设立的合作研究计划。A3前瞻计划的宗旨是联合资助中、日、韩三国科学家在选定的战略领域共同开展世界一流水平的合作研究,并通过计划的实施,培养杰出科技人才和共同解决区域问题,推动亚洲成为世界有影响的科学研究中心。

2016-11-03

迄今为止最大的自闭症测序研究产生了与自闭症谱系障碍相关的102个基因

In the largest genetic sequencing study of autism spectrum disorder (ASD) to date, researchers have identified 102 genes associated with ASD, and report significant progress toward teasing apart the genes associated with ASD from those associated with intellectual disability and developmental delay, conditions between which there is often overlap. The findings were presented at the American Society of Human Genetics 2018 Annual Meeting in San Diego, Calif. Jack Kosmicki, Ph.D. candidate at Harvard University; Mark J. Daly, Ph.D., chief of the Analytic and Translational Genetics Unit at Massachusetts General Hospital; and collaborators studied 37,269 genetic samples collected from large research cohorts worldwide. "With about twice as many samples as any previous studies, we were able to substantially increase the number of genes studied, as well as incorporate recent improvements to the analytical methodology," said Dr. Daly. "By bringing together data from several existing sources, we hope to create a resource for definitive future analysis of genes associated with ASD." Indeed, the larger sample size enabled Mr. Kosmicki and colleagues to increase the number of genes associated with ASD from 65 in 2015 to 102 today. Of these 102 genes, 47 were found to be more strongly associated with intellectual disability and developmental delay than ASD, while 52 were more strongly related to ASD, and three were related to both. Statistically, the genes were identified at a 10 percent false discovery rate. "Being able to look at other disorders in connection to ASD is significant and valuable for being able to explain the genetics behind the variety of possible outcomes within ASD," said Mr. Kosmicki. Looking forward, the researchers believe these findings will help improve scientific understanding of the inheritance and biology of ASD, and the ability to characterize phenotypes into categories within and overlapping with ASD. They hope to connect the results of common- and rare-variant ASD research with those of larger genetic studies of intellectual disability, developmental delay, and psychiatric traits.

2018-10-18

骨髓增生性肿瘤的分类和个体化预后

Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and myelofibrosis, are chronic hematologic cancers with varied progression rates. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment.

2018-10-17

肥胖中代谢组的严重紊乱与健康风险相关

Obesity is a heterogeneous phenotype that is crudely measured by body mass index (BMI). There is a need for a more precise yet portable method of phenotyping and categorizing risk in large numbers of people with obesity to advance clinical care and drug development. Here, we used non-targeted metabolomics and whole-genome sequencing to identify metabolic and genetic signatures of obesity. We find that obesity results in profound perturbation of the metabolome; nearly a third of the assayed metabolites associated with changes in BMI. A metabolome signature identifies the healthy obese and lean individuals with abnormal metabolomes—these groups differ in health outcomes and underlying genetic risk. Specifically, an abnormal metabolome associated with a 2- to 5-fold increase in cardiovascular events when comparing individuals who were matched for BMI but had opposing metabolome signatures. Because metabolome profiling identifies clinically meaningful heterogeneity in obesity, this approach could help select patients for clinical trials.

2018-10-17

GSK3B的功能变体rs334558与抑郁症患者的缓解相关

Purpose: GSK3B and AKT1 genes have been implicated in the pathogenesis of a number of psychiatric and neurological disorders. Furthermore, their genetic variants are associated with response to antidepressant pharmacotherapy. As the evidence is still incomplete and inconsistent, continuing efforts to investigate the role of these two genes in the pathogenesis and treatment of brain disorders is necessary. The aim of our study was thus to evaluate the association of variants of these two genes with depressive disorders and drug treatment response. Patients and methods: In the present study, 222 patients with a depressive disorder who underwent pharmacological antidepressant treatment were divided into remitters and non-remitters following a 28-day course of pharmacotherapy. The association of a depressive disorder and remission rates with polymorphisms rs334558 in the GSK3B gene and rs1130214 and rs3730358 in the AKT1 gene was evaluated with a chi-square test. Results: Neither of the studied genetic variants was associated with a depressive disorder. Furthermore, frequencies of alleles and genotypes for rs1130214 and rs3730358 were not different in the groups of remitters and non-remitters. However, the activating allele T of the functional polymorphism rs334558 was significantly associated with remission, when all types of antidepressant drugs were included. This association continued as a trend when only patients taking selective serotonin reuptake inhibitors were considered. Conclusion: The present study provides support that the functional polymorphism rs334558 of GSK3B may play a role as a useful genetic and pharmacogenetic biomarker in the framework of personalized medicine approach.

2018-10-17

骨髓增生性肿瘤的分类和个体化预后

Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and myelofibrosis, are chronic hematologic cancers with varied progression rates. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment.

2018-10-17

Gritstone登陆纳斯达克 打造个体化抗癌疗法

本周,生物技术公司在纳斯达克市场掀起了一波IPO的热潮,共有5家公司先后上市。其中,今日上市的Gritstone Oncology作为打造个体化抗癌疗法的新锐,广受业界看好。 Gritstone成立于2015年,是一家专注开发肿瘤特异性免疫疗法的生物技术公司。我们知道,在不同患者的不同肿瘤上,会出现具有高度特异性的新抗原。如果能靶向这些新抗原开发免疫疗法,就有望对这些患者的癌症进行有效治疗。 然而在肿瘤细胞中,只有少量的DNA突变会转化为新抗原,这也给新抗原的鉴定带来了困难。目前,常规技术无法精准预测肿瘤特异的新抗原,因此也给免疫疗法的开发带来了困难。 为了解决这一难题,Gritstone开发了一款叫做EDGE的人工智能平台。利用海量的人类肿瘤数据,这一人工智能平台有望从中寻找到“鉴别肿瘤新抗原”的洞见,并将其应用于临床。目前,这一平台上已经获取了300多位患者的数据,多肽数量超过100万条。值得一提的是,这些患者罹患多种肿瘤类型,且祖源来自全球各地。这些多样化的数据,有助于提升其人工智能平台的能力。 目前,Gritstone已有两款免疫疗法进入了临床前阶段。第一款叫做GRANITE-001,针对患者特异新抗原所开发。具体来看,这款疗法会先从患者体内获取活检组织,对肿瘤进行测序。随后,EDGE人工智能平台会对肿瘤新抗原进行预测,从而推动个体化疗法的设计与使用。Gritstone相信,在罹患常见肿瘤的患者群体中,大约有70%-80%的患者有望从中受益。 其另一款疗法SLATE-001则有所不同。如果说GRANITE-001是一种疗法治疗一位患者,SLATE-001就是一种疗法治疗多名患者。这是由于不同的患者可能具有共同的突变(如常见的癌症驱动基因突变)。因此,针对特定新抗原的免疫疗法,有望使多名患者从中受益。 Gritstone的治疗理念得到了业界的普遍看好,并已和bluebird bio等公司达成合作协议。先前,这家公司的A轮与B轮融资总额约2亿美元,参与投资的包括Versant Ventures、The Column Group、Clarus Funds、Frazier Healthcare Partners、Redmile Group、Casdin Capital、Lilly Asia Ventures、Trinitas Capital、GV、Alexandria Venture Investments、以及Bay City Capital等知名风投机构。2017年,它也入选了“生物技术猛公司”(FierceBiotech's 2017 Fierce 15)榜单。评语指出,“这些公司有着杰出的科学平台,有着卓越的管理团队,有着光明的未来前景”。 我们期待随着成功登陆纳斯达克市场,Gritstone能进一步获得资本助力,推进个体化肿瘤免疫疗法的研发,为全球更多患者带来创新抗癌方案。

2018-09-30

成人斯蒂尔病发病机制、生物标志物和治疗靶点

Adult-onset Still’s disease (AoSD) is a rare but clinically well-known, polygenic, systemic autoinflammatory disease. Owing to its sporadic appearance in all adult age groups with potentially severe inflammatory onset accompanied by a broad spectrum of disease manifestation and complications, AoSD is an unsolved challenge for clinicians with limited therapeutic options. This Review provides a comprehensive insight into the complex and heterogeneous nature of AoSD, describing biomarkers of the disease and its progression and the cytokine signalling pathways that contribute to disease. The efficacy and safety of biologic therapeutic options are also discussed, and guidance for treatment decisions is provided. Improving the approach to AoSD in the future will require much closer cooperation between paediatric and adult rheumatologists to establish common diagnostic strategies, treatment targets and goals.

2018-09-17

机器学习在癌症基因组图谱中发现肿瘤基因的变异和对药物的敏感性

Matching unique genetic information from cancer patients' tumors with treatment options -- an emerging area of precision medicine efforts -- often fails to identify all patients who may respond to certain therapies. Other molecular information from patients may reveal these so-called "hidden responders," according to a Penn Medicine study in Cell Reports this week. The findings are published alongside several papers in other Cell journals this week examining molecular pathways using The Cancer Genome Atlas (TCGA). "Targeted sequencing can find individuals with certain mutations that are thought to confer susceptibility to anti-cancer drugs," said senior author Casey Greene, PhD, an assistant professor of Pharmacology in the Perelman School of Medicine at the University of Pennsylvania. "But many people may lack these mutations, and as machine learning approaches improve they may help guide these patients to appropriate therapies." Greene and first author and doctoral student Gregory P. Way used machine learning to classify abnormal protein activity in tumors. This branch of artificial intelligence develops computer programs that can use new data to learn and make predictions. The algorithm they devised to search TCGA integrates genetic data from 33 different cancer types. Greene and Way used information from the transcriptome, the grand total of all messenger RNAs expressed within an individual. They specifically applied their model to the Ras pathway, a family of genes that make proteins that govern cell replication and death. Changes in the normal function of Ras proteins -- mutations which are responsible for 30 percent of all cancers -- can power cancer cells to grow and spread. These mutations are often referred to as the "undruggable Ras," having beaten back a variety of investigational inhibitor drugs and vaccine-based therapies. "This model was trained on genetic data from human tumors in The Cancer Genome Atlas and was able to predict response to certain inhibitors that affect cancers with overactive Ras signaling in an encyclopedia of cancer cell lines," Greene said. The upshot is that the transcriptome is underused in bringing precision to oncology, but when combined with machine learning it can aid in identifying potential hidden responders. The Penn team collaborated with coauthor Yolanda Sanchez, PhD, a cancer biologist from the Geisel School of Medicine at Dartmouth College. They are working together to mesh her identification of compounds that target tumors with runaway Ras activity and tumor data (analyzed by machine learning) to find patients who could benefit from these potential cancer drugs. "For precision medicine to benefit individuals in real time, we must develop robust models to efficiently test efficacy of potential therapies," Sanchez said. "We can use this very powerful combined approach of machine learning-guided drug discovery using Avatars, which are mice carrying identical copies of a patient's tumors. The Avatars allow our interdisciplinary team to identify the tumors with runaway Ras activity and evaluate and compare multiple therapies in real time." Story Source: Materials provided by University of Pennsylvania School of Medicine. Note: Content may be edited for style and length. Journal Reference: Gregory P. Way et al. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 2018; 23 (1): 172 DOI: 10.1016/j.celrep.2018.03.046

2018-04-10

知识库

化学信息数据共享系统

数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。

查看更多

生物信息共享系统

数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。

查看更多

个性化药物简报2018年第卷第10期

简介:简报将及时报道本专项最新工作进展与重要研究成果,同时介绍国内外个性化药物研究及发展战略和政策的最新动态,剖析国内外批准上市的个性化药物,梳理具有生物标志物标签的临床药物使用情况,从而一方面使相关部门和社会充分了解专项实施成效,另...

查看详情>>

个性化药物专利地图

揭示六大重要疾病领域个性化药物专利申请情况,总结分析关键技术分布态势,指引药物研发方向,研究竞争对手情况……

查看详情 >>

态势报告